FAIRCHILD

FDMA2002NZ

Dual N－Channel PowerTrench ${ }^{\circledR}$ MOSFET

General Description

This device is designed specifically as a single package solution for dual switching requirements in cellular handset and other ultra－portable applications．It features two independent N －Channel MOSFETs with low on－state resistance for minimum conduction losses． The MicroFET 2×2 offers exceptional thermal performance for its physical size and is well suited to linear mode applications．

Features

－ $2.9 \mathrm{~A}, 30 \mathrm{~V} \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=123 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=140 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{GS}}=3.0 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=163 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{GS}}=2.5 \mathrm{~V}
\end{aligned}
$$

－Low profile -0.8 mm maximum－in the new package MicroFET $2 \times 2 \mathrm{~mm}$
－HBM ESD protection level $=1.8 \mathrm{kV}$（Note 3）
－RoHS Compliant

Absolute Maximum Ratings $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter		Ratings	Units
V_{DS}	Drain－Source Voltage		30	V
$\mathrm{V}_{\text {GS }}$	Gate－Source Voltage		± 12	V
ID	Drain Current－Continuous（ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}$ ） －Continuous（ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{G S}=2.5 \mathrm{~V}$ ）		2.9	A
			2.7	
	－Pulsed		10	
P_{D}	Power Dissipation for Single Operation Power Dissipation for Single Operation	（Note 1a）	1.5	W
		（Note 1b）	0.65	
$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	Operating and Storage Temperature		-55 to +150	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

$\mathrm{R}_{\text {өJA }}$	Thermal Resistance，Junction－to－Ambient	（Note 1a）	83 （Single Operation）	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance，Junction－to－Ambient	（Note 1b）	193 （Single Operation）	
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance，Junction－to－Ambient	（Note 1c）	68 （Dual Operation）	
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance，Junction－to－Ambient	（Note 1d）	145 （Dual Operation）	

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
002	FDMA2002NZ	$7^{\prime \prime}$	8 mm	3000 units

Electrical Characteristics $\quad T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units

Off Characteristics

BV ${ }_{\text {DSs }}$	Drain-Source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	30			V
$\frac{\Delta \mathrm{BV}_{\mathrm{DSS}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$		25		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
ldss	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=24 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
I ${ }_{\text {gss }}$	Gate-Body Leakage Current	$\mathrm{V}_{G S}= \pm 12 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			± 10	$\mu \mathrm{A}$

On Characteristics

$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\text {GS }}, \quad \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	0.4	1.0	1.5	V
$\frac{\Delta \mathrm{V}_{\mathrm{GS}(\mathrm{th})}}{\Delta \mathrm{T}_{\mathrm{J}}}$	Gate Threshold Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$		-3		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{DS}(\text { on) }}$	Static Drain-Source On-Resistance	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.9 \mathrm{~A}$		75	123	$\mathrm{m} \Omega$
		$\mathrm{V}_{G S}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.7 \mathrm{~A}$		84	140	
		$\mathrm{V}_{G S}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}$		92	163	
		$\mathrm{V}_{G S}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.9 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$		95	166	
		$\mathrm{V}_{G S}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.7 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$		138	203	
		$\mathrm{V}_{G S}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$		150	268	

Dynamic Characteristics

$\mathrm{C}_{\text {iss }}$	Input Capacitance	$V_{\text {DS }}=15 \mathrm{~V}$,$\mathrm{f}=1.0 \mathrm{MHz}$	190	220	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance		30	40	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance		20	30	pF

Switching Characteristics (Note 2)

$\mathrm{t}_{\text {don }}$	Turn-On Delay Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{GEN}}=6 \Omega \end{aligned}$	6	12	ns
t_{r}	Turn-On Rise Time			8	16	ns
$\mathrm{t}_{\text {doff) }}$	Turn-Off Delay Time			12	21	ns
t_{f}	Turn-Off Fall Time			2	10	ns
Q_{g}	Total Gate Charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{D}}=2.9 \mathrm{~A}$,	2.4	3.0	nC
Q_{gs}	Gate-Source Charge			0.35		nC
Q_{gd}	Gate-Drain Charge			0.75		nC

Drain-Source Diode Characteristics and Maximum Ratings

I_{s}	Maximum Continuous Drain-Source Diode Forward Current			2.9	A
$\mathrm{V}_{\text {SD }}$	Drain-Source Diode Forward	$\mathrm{I}_{\mathrm{S}}=2.0 \mathrm{~A}$	0.9	1.2	V
	Voltage	$\mathrm{I}_{\mathrm{S}}=1.1 \mathrm{~A}$	0.8	1.2	
$\mathrm{t}_{\text {IT }}$	Diode Reverse Recovery Time	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=2.9 \mathrm{~A}, \\ & \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	10		ns
Q_{rr}	Diode Reverse Recovery Charge		2		nC

Electrical Characteristics

Notes:

1. $R_{\theta J A}$ is determined with the device mounted on a 1 in 2 oz. copper pad on a 1.5×1.5 in. board of FR-4 material. $R_{\theta J C}$ is guaranteed by design while $R_{\theta J A}$ is determined by the user's board design.
(a) $R_{\theta J A}=83^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 \mathrm{in}^{2}$ pad of 2 oz copper, $1.5^{\prime \prime} \times 1.5^{\prime \prime} \times 0.062^{\prime \prime}$ thick PCB
(b) $R_{\theta J A}=193^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a minimum pad of 2 oz copper
(c) $R_{\theta J A}=68^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 \mathrm{in}^{2}$ pad of 2 oz copper, $1.5^{\prime \prime} \times 1.5^{\prime \prime} \times 0.062^{\prime \prime}$ thick PCB
(d) $R_{\theta J A}=145^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a minimum pad of 2 oz copper

Scale 1 : 1 on letter size paper
2. Pulse Test: Pulse Width < $300 \mu \mathrm{~s}$, Duty Cycle < 2.0%
3. The diode connected between the gate and source serves only protection against ESD. No gate overvoltage rating is implied.

Typical Characteristics

Figure 1. On-Region Characteristics.

Figure 3. On-Resistance Variation with Temperature.

Figure 5. Transfer Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Dimensional Outline and Pad Layout

RECOMMENDED LAND PATTERN

BOTTOM VIEW

NOTES:
A. CONFORMS TO JEDEC REGISTRATION MO-229, VARIATION VCCC EXCEPT AS NOTED.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER

ASME Y14.5M, 1994
D. NON-JEDEC DUAL DAP
E. DRAWING FILE NAME :

MLP06Jrev3

FAIRCHILD

SEMICONDUCTOR*

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\circledR}$	FPS ${ }^{\text {™ }}$	PDP-SPM ${ }^{\text {тM }}$	The Power Franchise ${ }^{\circledR}$
Build it Now ${ }^{\text {TM }}$	F-PFS ${ }^{\text {™ }}$	Power-SPM ${ }^{\text {™ }}$	${ }^{\text {the }}$ wer
CorePLUS ${ }^{\text {т }}$	FRFET ${ }^{\circledR}$	PowerTrench ${ }^{\circledR}$	franchise
CorePOWER ${ }^{\text {¹ }}$	Global Power Resource ${ }^{\text {SM }}$	Programmable Active Droop ${ }^{\text {TM }}$	TinyBoost ${ }^{\text {TM }}$
CROSSVOLT ${ }^{\text {TM }}$	Green FPS ${ }^{\text {m }}$	QFET ${ }^{\circledR}$	TinyBuck ${ }^{\text {TM }}$
CTL ${ }^{\text {M }}$	Green FPS ${ }^{\text {™ }}$ e-Series ${ }^{\text {™ }}$	QS ${ }^{\text {TM }}$	TinyLogic ${ }^{\circledR}$
Current Transfer Logic ${ }^{\text {TM }}$	GTO $^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	TINYOPTO ${ }^{\text {™ }}$
EcoSPARK ${ }^{\text {® }}$	IntelliMAX ${ }^{\text {TM }}$	RapidConfigure ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
EfficentMax ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {™ }}$	Saving our world 1 mW at a time ${ }^{\text {TM }}$	TinyPWM ${ }^{\text {™ }}$
EZSWITCH ${ }^{\text {TM }}$ *	MegaBuck ${ }^{\text {TM }}$	SmartMax ${ }^{\text {TM }}$	TinyWire ${ }^{\text {TM }}$
E7 ${ }^{\text {T1 }}$	MICROCOUPLER ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	μ SerDes ${ }^{\text {TM }}$
$E \rightarrow$	MicroFET ${ }^{\text {T }}$	SPM ${ }^{\circledR}$	U
5	MicroPak ${ }^{\text {™ }}$	STEALTH ${ }^{\text {TM }}$	SerDes"
Fairchild ${ }^{\text {® }}$	MillerDrive ${ }^{\text {TM }}$	SuperFET ${ }^{\text {TM }}$	UHC ${ }^{\circledR}$
Fairchild Semiconductor ${ }^{\circledR}$	MotionMax ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-3	Ultra FRFET ${ }^{\text {TM }}$
FACT Quiet Series ${ }^{\text {TM }}$	Motion-SPM ${ }^{\text {™ }}$	SuperSOT ${ }^{\text {TM }}$-6	UniFET ${ }^{\text {m }}$
$\mathrm{FACT}^{\text {® }}$	OPTOLOGIC ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-8	VCX ${ }^{\text {™ }}$
$\mathrm{FAST}^{\text {® }}$	OPTOPLANAR ${ }^{\circledR}$	SuperMOS ${ }^{\text {™ }}$	VisualMax ${ }^{\text {TM }}$
FastvCore ${ }^{\text {TM }}$ FlashWriter ${ }^{\circledR}$ *	(1) ${ }^{\circledR}$	$\boldsymbol{S}_{\text {GENERAL }}^{\text {SYSTEM }}$	

* EZSWITCH ${ }^{\text {TM }}$ and FlashWriter ${ }^{\circledR}$ are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

